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The study team for the Global Magnetospheric Dynamics Mission was a

partnership between UCLA, NASA Lewis Research Center, NASA Goddard Space

Flight Center and AeroAstro. The team included the principal investigator, C. T. Russell,
C. Kluever, J. L. Burch, J. F. Fennell, K. Hack, J. E. Hanson, G. B. Hillard, W. S. Kurth,

R. E. Lopez, J. G. Luhmann and J. B. Martin. The purpose of the study was to determine

if the Grand Tour Cluster mission could be repackaged as a much smaller mission

utilizing solar electric propulsion for maneuvering. This had the potential of saving fuel

because the SEP engine is very efficient but the addition of the SEP engine adds costs

and mass. Moreover, it has the potential to interfere with some of the particles and fields

measurements that are needed for this mission.

The design team met four times: once at UCLA (April 10 and 11, 1997); once at

Goddard (July 21-23, 1997); once at Cocoa Beach (August 25-27, 1997); and once at the

Lewis Research Center (Sept. 17-19, 1997). At the Goddard meeting the design was

vetted in the Integrated Mission Design Center. GMD was one of its earliest users.

A successful design was developed, one with many advantages over the original

mission. The time spent in orbit was more evenly spread over the region being

investigated. The radiation close was significantly lower and the mission did not rely on

gravity assist at the moon and thus did not have to make measurements that far out in the

tail. A spacecraft design was developed that keeps interference from the engines to a

minimum. The design however was quite specific for four spacecraft. It could not be

easily scaled to five spacecraft for example.

One problem was discovered that is a concem for all similar missions. Inter-

spacecraft communication can determine the spacing of the vehicles easily and to the

accuracy required. However, the orientation of the polyhedron with the spacecraft at its

vertices is not well known for small separations. Ground station range measurements

give the line of sight location well but not the angle around that vector. This is a problem

any such mission needs to solve. Neither the navigation teams at Goddard nor at Lewis

were willing to attempt to solve this problem.

At the completion of the study a report was made to the AGU meeting in San

Francisco [1] and a paper published in the volume "Science Closure and Enabling

Technologies for Constellation Class Missions" [2]. This paper is attached.



Developmentsat this time took someof the momentumout of the projectwhen
SEC Director GeorgeWithbroe said that no Mid Ex missionswould be selectedthat
proposedto do partof theSolarTerrestrialProbeline. Sincea GrandTour Clustertype
missionwascarriedin the SECRoadmapasoneof thenext SolarTerrestrialProbeswe
decidednot to prepareaproposalto NASA basedon this study. At that point thestudy
fundshad beenlargelyexpendedandwork proceededto preparethepublication that is
attached.No patentsor inventionsresultedfrom this effort.
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Abstract. The Geospace Magnetospheric Dynamics (GMD) mission

is designed to provide very closely spaced, multipoint measurements

in the thin current sheets of the magnetosphere to determine the rela-

tion between small .scale processes and the global dynamics of the mag-

netosphere. Its trajectory is specifically designed to optimize tile time

spent in the current layers and to minimize radiation damage to the

spacecraft. Observations are concentrated in the region 8 to 40 R E-

The mission consists of three phases. After a launch into geostation-

ary transfer orbit the orbits are circularized to probe the region be-

tween geostationary orbit and the magnetopause; next the orbit is elon-

gated keeping perigee at the magnetopause while keeping the line of

apsides down the tail. Finally, once apogee reaches 40 R,_ Ihe mclina-

lion is changed so that the orbit will nlalch the profile of the noon-

midnight meridian ofthe magnetosphere. This mission consists o14

solar electrically propelled vehicles, each with a single NSTAR thruster

utilizing 100 kg of Xe to tour the nutgnctosphere in tile course of a 4.4

year mission, the same thrusters that have Ix_en successfully tested oa

the Deep Space- I missiou.

1. Introduction

In 1996 the Space Physics Division of NASA's Office of Space

Science awarded grants for the study of new mission concepts. One

of these awards was for a mission called Global Magnetospheric Dy-

namics (GMD) that was designed to capture the scientific objectives

of the original Grand Tour Cluster mission but to accomplish this within

the budget of a solar terrestrial probe class mission. At the same time

an attempt was to be made to improve the science return by optimizing

certain features of the mission. Tile award to UCLA for GMD was

received in March 1997 and the study commenced. The stud), part-

ners are Aero Astro, NASA's Lewis Research Center and Goddard Space

Flight Center, the University of California Los Angeles and the indi-

vidual scientists of the study team co-authoring this report.

2. The Critical Measurements

The purpose of this mission is to derive a complete physical under-

standing of the plasma processes at work, not just to identify or clas-

sify the various events encountered. Thus both the electric and mag-

netic fields, the low order moments of the plasma distribution and its

composition, and the energetic particles that are accelerated by these

processes must be measured and studied. These critical measurements

require four key investigations: a magnetic fields investigation with a

IInstilute of Geophysics and Planetary Physics and Department of Earth

and Space Science, University of California Los Angeles, CA

2University of Missouri, Kansas City, MO
3Southwest Research Institute, San Antonio, TX

'Aerospace Corporation, El Segundo, CA
SNASAJI.,ewis Research Center. Cleveland, OH

eAeroAstro, Mountain View, CA

7University of lowa, Iowa City, IA

*University of Maryland, College Park, MD

'_University of California, Berkeley, CA

J°NASA/Goddard Space Flight Center. Greenbelt, MD

small accurate instrument such as tile fluxgate magnetometer; a waves

investigation including a search coil and dipole antenna; a 3D plasma

instrument with compositional resolution; and an energetic electron

and ion device with large geometric factor. Since the plasmas to be

probed are tenuous and the signals to be measured are often weak, the

geometric factors of these instruments cannot be Sacrificed. Thus the

instruments can be miniaturized only so far. In particular, booms and

wire antennas need to be of the length usually found on space physics

missions and the particle instrument need to have "sensors" of the

usual dimensions despite the advances in electronics that make the

detection circuitry much smaller. Finally we include a spacecraft inter-

actions package to under.stand better the nature of the effects of the

varying plasma environment on the spacecrafl electric potential.

3. The GMD Spacecraft

The four GM D spacecraft will be launched into a Geosynchronous

Transfer Orbit from a Della II launch vehicle. Two views of the folded

spacecraft are shown in Figurc 1. The spacecraft consists of two sec-

tions: the ntain spacecraft with thruster fuel, solar panels and commu-

nication systems and an instrument panel containing the scientific in-

struments. Four of these folded modules fit within the Delta shroud

with a deployment fixture. Upon spacecraft deployment the solarar-

ray unfolds and the boonts and antennas deploy. The deployed space-

craft and antennas are shown in Figure 2. The NSTAR engine sup-

plies a specific itnpulse that is ten times that of a state-of-the-art chemi-

cal bi-propellant system. Thus the GMD mission with slightly more

than 100 kg of fuel can maneuver throughout the magnetosphere and

perform the plane change to high inclination without a lunar gravita-

tional assist that places the spacecraft out of the region of prime inter-

est. The solar panels generate about 2.5 k W of power. A schematic of

the thruster is shown in Figure 3. This thruster is being space-quali-

fied on the Deep Space One mission. These thrusters generate 90 mN

of thrust for 12,000 hours of operation during which lime they utilize

over 120 kg of Xe. At the time of this writing the thrusters have been

turned on and have successfully operated in space. More data on their

operation will be available over the course of the mission.

4. Trajectory Design Overview

The trajectory for the GMD mission has been designed to maxi-

mize the coverage of the important currents, regions, and boundaries

of the magetospheric plasma. Four identical spacecraft are launched

into a geosynchronous transfer orbit (GTO) by a single Delta 7925

launch vehicle. Solar electric propulsion (SEP) is utilized as the pri-

mary mode of propulsion for the orbital maneuvers. The four space-

craft use the SEP system to transfer from the inclined GTO to acircu-

lar equatorial orbit with a radius of 10 R E. At this point, the tetrahedral

constellation begins probing the magnetospheric regions of interest.

The orbital apogee is slowly incre2t.sed while the line of apses is rotated

so that perigee remains near local noon and apogee remains in the

geomagnetic tail. Extended coast arcs of several days are included

during these maneuvers so that thrust-free measurements can be made.

Science Closure and Enabling Technologies for Constellation Class Missions, edited by V. Angelopoulos and P. V. Panetta, pp. 58-62, UC

Berkeley, Calif., 1998.
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Figure I. Two views of tile GMD spacecraft in tile stowed
configuration.
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Figure 2. The GMD spacecraft in tile deployed configuration.

Once an apogee of 40 R Eis reached, a plane-change maneuver to po-

lar orbit is performed so that the high-latitude region of the magneto-

sphere is explored. Finally, the apogee is increased to 70 REat the end

of the mission. The entire mission lasts 4.4 years and includes 2.8

years of thrust-free operation.

The Delta 7925 launch vehicle places a payload of 1850 kg into a

standard GTO with a perigee of 185 km altitude, apogee of 35,785

km+ and an inclination of 28.7 degrees. A deployment mechanism

with a mass of 100 kg is used to separate the four spacecraft from the

payload shroud. Therefore, the initial mass of each of the four identi-

cal spacecraft is 437.5 kg. Each spacecraft is powered by a 2.25 kW

solar array of which 160 W is required for communications, guidance,

navigation, and control (GN&C), instruments, and general spacecraft

housekeeping functions. A single 30.-cm ion thruster propels each space-

craft and 115 kg of Xenon propellant is loaded on each spacecraft.

The specific impulse (lsp) of the Xenon system is set at 3300 sec,

which is consistent with the SEP system for the Deep Space One Mis-
sion.

A mission that was studied earlier and called the Grand Tour Clus-

ter (GTC) with very similar objectives to GMD had four phases each

with a different orbit: 1.2 x 12 R E, i0 ° inclination for !.5 years; 1.2 x

30 Rt, 10 ° inclination for 0.5 years, 8 x 235 R,_, lunar swingby orbit, 1

year;, and 10 x 50 R E orbit, 90 ° inclination for 0.5 years. The GTC

orbit plan had a number of problems. First, it encounters a high dos-
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Figure 3. Schematic illustralion of the operation of an ion
thruster.

age of radiation because of the long lasting, low perigee. It is not until

year 3 that perigee is raised If 8 R r and out of the region of high ener-

getic particle flux. Secondly, it only encounlers the low hititude mag-

netopause for a short period each orbit as it moves in and out across

the boundary. Third, it spends nlucll time at a distance near 235 R Ein

the tail, far beyond the average location of tile distant neutral point.

Fourth, the mission explores tile high latitude and low latitude magne-

topause but nothing in between. The GMD mission tailors its cover-

age closely to its objective,;.

4.1+ Phase I Initial Orbit and Circularization

The four spacecraft of the GMD mission would be launched into

an initial orbit very much like that proposed for GTC, close if that of a

Geosynchronous Transfer Orbit. A planar continuous-thrust maneu-

ver lasting 64 days transfers the tetrahedral constellation from GTO to

a 2.3 x 9.3 RE elliptical orbit. This transfer is completed as quickly as

possible so that solar array degradation caused by passage through the

radiation bells is minimized. The relatively rapid orbit transfer results

in a .solar cell degradation of only 8%. After the four spacecraft are out

of the most dangerous region of the radiation belts, the SEP thruster is

used near each apogee passage so that perigee is raised to 6 R E. After

the perigee-raise maneuver, the orbit inclination is reduced to zero by

using the SEP thruster at apogee so that the resulting orbit is in the

equatorial plane. Finally, a series of apogee bums are performed so

that perigee is raised to 10 R Eand a near-circular equatorial orbit is

produced. Three mandatory 5-day coast periods were enforced during

this final circularization maneuver so that the instruments could begin

measuring the magnetospheric regions and boundaries. These com-

bined orbital transfers last 394 days and require 49 kg of propellant per

spacecraft. The resultant trajectory is summarized in Figure 4.

4.2. Phase 2 The Tail Current Sheet and Magnetopause

The majority of the scientific measurements are made during the

next phase of the mission. The goal of this phase is to maximize cov-

erage of the magnetopause surface, the current disruption region, and

the plasma sheet. This is accomplished by using the SEP system to

slowly raise the orbit apogee and rotate the line of apses of the osculat-

ing orbit so that the apses remain nearly aligned with the rotating Earth-

Sun line. An innovative thrust-vector steering method is used to pro-

vide this simultaneous orbit control. Perigee bums ofvaryingduration



6O RUSSELLETAL.:GEOSPACEMAGNETOSPHERIC DYNAMICS MISSION

GTO to 6xl0 Re transfer 30

Plane change (inclination = 28.7 deg)
(i=28.7 to i=O deg)

/; _ 20

2 o

6xl0 Re to 10 Re circle transfer _ -10

-20

Figure 4. The GMD trajectory during the initial orbit and

circularization phase.

are used to maintain apogee growth. Optimal steering control for maxi-

mum apse-line rotation is utilized near the semi-minor axis crossings

where this control method is most effective. Therefore, tile region

near apogee is free of thrusting activity so 1hal measurements are pos-

sible. Furthennore. mandatory coasling periods of 10-20 days are en-

forced so that extended thrust-free measurements are possible. Dur-

ing the coasting period, the apses line remains essentially fixed in iner-

tim space and begins to lag behind the rotating Earth-Sun line. At the

end of the coasting period, the apogee raise/rotation maneuver is re-

sumed so that the apses li,ae is rotated past the Earth-Sun line while

apogee is simultaneously raised. Using this technique, the growing

apogee remains near the center of the geomagnetic tail for maximum

coverage. The apogee raise/rotation maneuver lasts 580 days and re-

quires 41.2 kg of propellant. The final elliptical orbit is 10.5 x 40 R_.

The orbit-plane trajectory is shown in Figure 5 in a rotating frame with

the x-axis aligned with the Earth-Sun direction. To compare the time

spent in the neighbodlood of the region:; of interest we calculate the

time spent within :t.-0.5 Rr. of the Shue et al. [1997] magnetopause

with a no_ at 10.3 RE; within a plasma sheet 20 Re wide and I0 to 40

RE in extent down tail and 4 R E thick: and in a current disruption re-

gion from 7 to I0 R_, I RF.thick within 3 hours of midnight. During

this period, the four spacecraft spend 33.8 days at the magnetopause,

3.2 days in the current disruption region, and 21.2 days at the plasma

sheet. If one includes thrusting periods, the time in the current disrup-

tion region increases to 10.3 days. As a comparison, one year of the

ESA Cluster mission spends 27.2 days at the magnetopaus¢, 2.2 days

in current disruption region, and only 0.8 days in the plasma sheet.

One year of the first phase ( i .2 x 12 RE) of the GTC mission spends

23.5 days at the magnetopause, 14.1 days in the current disruption

region, and 15. ! days in the plasma sheet.

4.3 Phase 3. The Inclination Raise to 90*

Once apogee has reached 40 R e and the rear-Earth neutral point

has been explored, the orbit inclination is raised as the line of apsides is

rotated about the Earth-Sun line as the Earth orbits the Sun in its yearly

motion about the Sun. During this period the 4 spacecraft explore the

Earth's bow shock and the mid-latitude magnetopause. After about 9

months and the expenditure of i 2 kg of xenon the orbit again enters

the tail and cuts through the magnetopause at high latitudes skimming

the magnetopause from the nose to about 20 RE as the orbit plane

passes through the noon-midnight meridian. At this point any unex-

pended fuel can be used to increase apogee to explore even more dis-
tant reaches of the tail.

-30

surface

-50 -40 -30 -20 -10 0 10 20

X (Earth-sun direction). Rc

Figure 5. The GMD trajectory during the tail current sheet

and magnctopause phase.

4.4 How Near'? How Far?

The ESA Clusler mission has chosen to operate its spacecraft a

substantial distance apart, relative to lypical scale lengths of the plasma.

In phase [ the separmion will be about 600 km near apogee; in phase

2. 2000 to 5000 kin; in phase 3, 2(10 to 200(I kin; and in phase 4, 1-3

R r |Escoubet et al., 19971. However, these distances seem very much

larger than ideal for studying the bow shock and magnetopause. Both

these structures move rapidly and irregularly so that successful studies

on ISEE 1 and 2 generally used data obtained at separations under 500

kin. Certain structures such as mirror mode waves needed even shorter

separations. There has not been a study of what is the shortest separa-

tion needed in such multi spacecraft sludies but there is one report that

indicates that 15 km .separation returns very useful information [Elphie,

19891. The key figures from Elphic's study are shown in Figure 6. In

the bottom panels the two spacecraft data are simply differenced. We

can already see on the right that even at 15 km separation there are

large differences between the magnetic fields at the two spacecraft.

On the other hand the differences are a fraction of the background

field. Thus, the spacecraft at this separation are accurately acting as a

curlometer.

The greatest separation distance should be chosen to provide con-

straims on the size and shape of the largest structure of interest. If a

plasmoid of radius 5 R Eis of interest then a separation of up to I Re
would seem reasonable.

The greatest distance for apogee should be at the distance of the

phenomenon of interest whose distance is greatest. For GMD we are

interested in the near-Earth neutral point, inside of about 40 R v In an

extended mission it would be possible to explore the distant neutral

line at about 140 RE[Nishida et al., 1996].

The size of the tetrahedron can be readily measured accurately by

an interspacecraft radio link. This link can also be used to signal all

four spacecraft that one of them has entered an interesting region and

for all four spacecraft to begin to take higher rate data. The orientation

of the tetrahedron cannot be determined with a simple radio link. The

distance to each satellite along the radius vector can be determined to

300 m but not the cross-track separation. Thus the orientation of the
tetrahedron around the radius vector can be determined with much

less accuracy than the separation between spacecraft, and requires some

further study.
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Figure 6. ISEE I and 2 data fronl November 12, 1977 near a magnetopause crossing at 2300 UT when the spacecraft were

separated by only 15 kin. The upper panel shows the high-resolution data from ISEE I and the lower panel shows the difference

field, ISEE I minus ISEE 2. The right-hand panel shows the central four minutes of the left-hand panel. Within the current layer

there is much small-scale structure. Within the magnetosphere there is no fine scale structure.

5. Summary and Conclusions

The study of the GMD mission shows that greatly increased time

can be spent in the scientifically interesting regions using solar electric

propulsion. The costs for such a mission lies in the range between a
MIDEX and a Solar Terrestrial Probe mission. The robustness of the

mission is increased by removing any reliance on gravitational assists.
The solar electric propulsion system allows the trajectory to change to

respond to scientific discoveries. The mission can recover from com-
manding and thrusting errors. It can retrace its steps if increased ob-

serving time is required of any phenomena.
There is an increased cost of about $10M per spacecraft in using

SEP but the returns on the investment are well worth the extra cost.

The magnets in the thrusters create a strong field at one end of the

spacecraft but a long boom enables precision measurements to be ob-

tained. While the thrusters are in use the plasma and plasma wave

environments are disturbed. Thus some measurements require non-

thrusting periods. The GMD mission provides 2.8 years of such quiet

operation.

We did identify a generic problem with tight clusters of vehicles in

which the relative orientation of the tetrahedron is important.

Interspacecrafi communication allows the separation to be determined

precisely but the orientation of the tetrahedron cannot be determined

as well. in the limit of very small separations, the orientation of the
tetrahedron around the axis to the receiving station becomes unde-

fined. This effect occurs for separation of the order of I km but re-

duces the accuracy of tetrahedral orientations of size from IO-lO0 km

to a lesser extent.

We conclude that solar electric propulsion is an excellent propul-

sion system for the Geospace Magnetospheric Dynamics mission or

any mission that attempts to tour the outer regions of the magneto-

sphere. The mission design is robust and affordable.
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